کامیار حسینی هاشمی؛ روح الله طالبی؛ شهریار حسینی هاشمی
چکیده
در این پژوهش، معادله مشخصه فرکانسی برای برخی از تیرهای غیر یکنواخت و همگن بر اساس تئوری تیر اویلر-برنولی به صورت تحلیلی بسته ارایه شده است. تیر در دو انتها حامل اجرام با حروج از مرکز، ممان اینرسی جرمی و قیود الاستیکی خطی و چرخشی است. از اینرو معادله مشخصه تحلیلی بسته قابلیت ارایه پارامتر های فرکانسی را برای طیف وسیعی از شرایط مرزی غیرکلاسیک ...
بیشتر
در این پژوهش، معادله مشخصه فرکانسی برای برخی از تیرهای غیر یکنواخت و همگن بر اساس تئوری تیر اویلر-برنولی به صورت تحلیلی بسته ارایه شده است. تیر در دو انتها حامل اجرام با حروج از مرکز، ممان اینرسی جرمی و قیود الاستیکی خطی و چرخشی است. از اینرو معادله مشخصه تحلیلی بسته قابلیت ارایه پارامتر های فرکانسی را برای طیف وسیعی از شرایط مرزی غیرکلاسیک ، را داراست. حل معادله دیفرانسیل حاکم و به کارگیری شرایط مرزی منجر به حل یک مسئله مقدار ویژه می گردد. از آن جایی که تیر غیر یکنواخت است حل دقیق معادله دیفرانسیل حاکم منوط به یافتن حل تحلیلی بسته برای خیز تیر می باسد. لذا نوع محدودی از تیرهای غیر یکنواخت قابلیت حل دقیق را دارا هستند. به منظور صحت سنجی و دقت روابط ارایه شده، نتایج حاصل از روش ارایه شده در این پژوهش با نتایج موجود برای تیرهای یکنواخت مقایسه شده است. همچنین شکل مودهای خیز نیز برای یک نمونه تیر آورده شده اند.
کوروش خورشیدی؛ مهدی بهرامی؛ محسن قاسمی
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 29 فروردین 1402
چکیده
در مقاله حاضر، کمانش نانو ورقهای تابعی مدرج مستطیلی با در نظر گرفتن اثر سطح بررسی شده است. به منظور تعریف خواص مواد از مدل موری-تاناکا بهره برده شده است که بر اساس این مدل خواص به طور پیوسته در راستای ضخامت تغییر میکند. میدان جابجایی با استفاده از تئوریهای تغییر شکل برشی اصلاحشده بدست آمدهاند که در این تئوریها بر خلاف تئوری ...
بیشتر
در مقاله حاضر، کمانش نانو ورقهای تابعی مدرج مستطیلی با در نظر گرفتن اثر سطح بررسی شده است. به منظور تعریف خواص مواد از مدل موری-تاناکا بهره برده شده است که بر اساس این مدل خواص به طور پیوسته در راستای ضخامت تغییر میکند. میدان جابجایی با استفاده از تئوریهای تغییر شکل برشی اصلاحشده بدست آمدهاند که در این تئوریها بر خلاف تئوری کلاسیک ورقها اثر اینرسی دورانی و تغییر شکلهای برشی عرضی در نظر گرفته شده است. جهت در نظر گرفتن اثرات مذکور از توابع مختلف مانند توابع نمایی، مثلثاتی، هایپربولیکی و پارابولیکی در راستای ضخامت بهره گرفته شده است. برای در نظر گرفتن اثرات غیر محلی و اثرات سطح به ترتیب از تئوریهای الاستیسیتهی غیر محلی و تئوری الاستیسیتهی سطح استفاده شده است. معادلات حاکم بر حرکت با استفاده از اصل همیلتون بدست آمدهاند و از روش حل گلرکین جهت حل این معادلات استفاده شده است. برای بررسی صحت نتایج به دست آمده، نتایج حاصل از این تحقیق با نتایج منتشر شده در مقالات معتبر مقایسه شده است. درانتها اثر پارامترهای مرتبط با اثر سطوح مانند تنش باقیمانده سطح، ثوابت الاستیسیتهی سطح و همچنین پارامترهایی مانند نسبت ضخامت به طول، نسبت عرض به طول، اندیس توانی، پارامتر غیر محلی بر روی بار بحرانی کمانش سیستم بررسی می گردد.